Uniqueness / nonuniqueness for nonnegative solutions of second - order parabolic equations of the form ut 1⁄4 Lu þ Vu g up in Rn

نویسندگان

  • János Engländer
  • Ross G. Pinsky
چکیده

In this paper we investigate uniqueness and nonuniqueness for solutions of the equation ut 1⁄4 Lu þ Vu gu in R ð0;NÞ; uðx; 0Þ 1⁄4 f ðxÞ; xAR; uX0; ðNSÞ where g40; p41; g;VACaðRnÞ; 0pfACðRnÞ and L 1⁄4Pni;j1⁄41 ai;jðxÞ @ @xi@xj þPni1⁄41 biðxÞ @ @xi with ai;j ; biACðRÞ: r 2003 Elsevier Science (USA). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness/nonuniqueness for Nonnegative Solutions of a Class of Second-order Parabolic Equations

We investigate uniqueness and nonuniqueness for nonnegative solutions of the equation ut = Lu+ V u− γu p in R × (0,∞); u(x, 0) = f(x), x ∈ R; u ≥ 0, where γ > 0, p > 1, γ, V ∈ C(R), 0 ≤ f ∈ C(R) and L = Pn i,j=1 ai,j(x) ∂ ∂xi∂xj + Pn i=1 bi(x) ∂ ∂xi with ai,j , bi ∈ C (R).

متن کامل

Non-divergence Parabolic Equations of Second Order with Critical Drift in Lebesgue Spaces

We consider uniformly parabolic equations and inequalities of second order in the non-divergence form with drift −ut + Lu = −ut + ∑ ij aijDiju + ∑ biDiu = 0 (≥ 0, ≤ 0) in some domain Q ⊂ Rn+1. We prove growth theorems and the interior Harnack inequality as the main results. In this paper, we will only assume the drift b is in certain Lebesgue spaces which are critical under the parabolic scalin...

متن کامل

Non-divergence Parabolic Equations of Second Order with Critical Drift in Morrey Spaces

We consider uniformly parabolic equations and inequalities of second order in the non-divergence form with drift −ut + Lu = −ut + ∑ ij aijDiju + ∑ biDiu = 0 (≥ 0, ≤ 0) in some domain Ω ⊂ Rn+1. We prove a variant of Aleksandrov-BakelmanPucci-Krylov-Tso estimate with Lp norm of the inhomogeneous term for some number p < n+1. Based on it, we derive the growth theorems and the interior Harnack ineq...

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

Quasilinear evolutionary equations and continuous interpolation spaces

In this paper we analyze the abstract parabolic evolutionary equations Dt ðu xÞ þ AðuÞu 1⁄4 f ðuÞ þ hðtÞ; uð0Þ 1⁄4 x; in continuous interpolation spaces allowing a singularity as tk0: Here Dt denotes the timederivative of order aAð0; 2Þ: We first give a treatment of fractional derivatives in the spaces Lðð0;TÞ;XÞ and then consider these derivatives in spaces of continuous functions having (at m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003